IT
IT관련 Topic 위주의 포스팅입니다. 필요한 Topic은 search하여 찾을 수 있습니다.
PCA(Principal Component Analysis)
1. PCA란? PCA(Principal Component Analysis)는 데이터의 차원을 축소하면서도 데이터의 분산을 최대한 보존하는 기법입니다. 즉, 고차원 데이터를 저차원으로 변환하여 주요 정보만 유지하면서 계산 비용을 줄이고, 데이터의 시각화를 돕는 데 사용됩니다. 2. … Read more
로지스틱 회귀(Logistic Regression)
1. 개요 로지스틱 회귀(Logistic Regression)는 종속 변수가 범주형(categorical)일 때 사용하는 지도 학습(Supervised Learning) 알고리즘입니다. 특히 이진 분류(Binary Classification) 문제에서 널리 사용됩니다. 예를 들면, 고객이 상품을 구매할지(1) 안 할지(0), 이메일이 스팸(1)인지 … Read more
크루스칼 알고리즘(Kruskal’s Algorithm)
크루스칼 알고리즘은 최소 비용 신장 트리(MST, Minimum Spanning Tree)를 찾는 알고리즘으로, 그리디(탐욕법, Greedy) 알고리즘을 기반으로 동작합니다. 그래프의 모든 정점을 최소 비용으로 연결하는 간선을 선택하는 방식입니다. 1. 알고리즘 동작 과정 2. … Read more
엘라스틱넷 (Elastic Net)
엘라스틱넷(Elastic Net) 회귀는 릿지 회귀(Ridge)와 라쏘 회귀(Lasso)의 장점을 결합한 모델입니다.즉, L1 정규화(라쏘)와 L2 정규화(릿지)를 동시에 적용하여 변수 선택과 가중치 축소를 함께 수행합니다. 1. 엘라스틱넷의 핵심 개념 2. 엘라스틱넷 회귀 수식 … Read more
릿지(Ridge) vs. 라쏘(Lasso) 회귀 비교
비교 항목 릿지 회귀 (Ridge Regression) 라쏘 회귀 (Lasso Regression) 정규화 방식 L2 정규화 (제곱합 ∑βj2\sum \beta_j^2∑βj2) L1 정규화 (절댓값 합 (\sum 과적합 방지 가능 (모든 계수를 작게 만듦) 가능 … Read more
라쏘 회귀(Lasso Regression)
라쏘 회귀(Lasso Regression)는 선형 회귀(Linear Regression)에 L1 정규화(Regularization)를 추가한 모델입니다.라쏘(Lasso)는 Least Absolute Shrinkage and Selection Operator의 약자로, 변수 선택(Feature Selection) 기능을 제공하는 것이 특징입니다. 1. 라쏘 회귀의 핵심 개념 라쏘 … Read more
차원 축소(Dimensionality Reduction)
차원 축소(Dimensionality Reduction)는 고차원의 데이터를 저차원의 공간으로 변환하는 기법입니다. 이는 데이터의 중요한 정보를 최대한 유지하면서 불필요한 정보(노이즈)를 제거하고, 계산 효율성을 높이며, 데이터 시각화와 모델 성능 향상에 기여합니다. 1. 차원 축소의 … Read more
XAI(설명 가능한 인공지능, eXplainable AI)
1. XAI(설명 가능한 인공지능)란? XAI(eXplainable AI, 설명 가능한 인공지능)는 인공지능 모델이 내린 결과와 의사결정 과정을 사람이 이해할 수 있도록 설명할 수 있는 기술입니다. 기존 AI 시스템(특히 딥러닝 기반 모델)은 높은 … Read more