빅데이터분석기사

과적합 (overfitting)

과적합은 머신러닝에서 학습용데이터를 과하게 학습하여, 실제데이터를 예측하지 못하는 현상을 말합니다. 인공지능(AI)의 학습 방법은 우리가 시험공부를 하는 과정과 아주 비슷합니다. 이…

1개월 ago

크롤링(crawling)과 스크래핑(scraping) 차이

크롤링(crawling)과 스크래핑(scraping)은 웹 데이터를 수집할 때 자주 사용되는 기술이지만, 크롤링은 웹사이트 탐식 및 수집, 스크래핑은 특정 데이터만 추출하는 방식으로 목적과…

1개월 ago

LangChain

1. LangChain 개요 LangChain은 LLM (Large Language Model) 기반 애플리케이션을 더욱 강력하고 유연하게 만들기 위한 프레임워크입니다. OpenAI, Hugging Face 등의…

4개월 ago

클라우드 네이티브(Cloud Native)

클라우드 네이티브(Cloud Native)는 클라우드 환경에서 애플리케이션을 구축하고 운영하는 방식을 의미합니다. 기존 온프레미스 방식과는 달리, 클라우드 네이티브는 컨테이너화(Containerization), 마이크로서비스(Microservices), 오케스트레이션(Orchestration), 데브옵스(DevOps),…

4개월 ago

RAG(Retrieval-Augmented Generation)

RAG(Retrieval-Augmented Generation)는 OpenAI와 같은 LLM (Large Language Model)이 정보를 생성할 때 외부 데이터베이스에서 관련 정보를 검색(Retrieve)하고 이를 기반으로 답변을 생성(Generate)하는…

4개월 ago

K-Fold Cross Validation

K-Fold Cross Validation(K-겹 교차 검증)은 머신러닝 모델의 성능을 평가하는데 사용되는 중요한 기법입니다. 일반적인 데이터셋을 훈련 데이터와 테스트 데이터로 단순 분할하는…

5개월 ago

엘라스틱넷 (Elastic Net)

엘라스틱넷(Elastic Net) 회귀는 릿지 회귀(Ridge)와 라쏘 회귀(Lasso)의 장점을 결합한 모델입니다.즉, L1 정규화(라쏘)와 L2 정규화(릿지)를 동시에 적용하여 변수 선택과 가중치 축소를…

5개월 ago

라쏘 회귀(Lasso Regression)

라쏘 회귀(Lasso Regression)는 선형 회귀(Linear Regression)에 L1 정규화(Regularization)를 추가한 모델입니다.라쏘(Lasso)는 Least Absolute Shrinkage and Selection Operator의 약자로, 변수 선택(Feature Selection)…

5개월 ago

릿지(Ridge)

릿지(Ridge)는 머신러닝과 통계에서 사용되는 릿지 회귀(Ridge Regression) 또는 릿지 정규화(Ridge Regularization) 를 의미합니다. 이는 선형 회귀(Linear Regression)의 일종으로, 과적합(Overfitting)을 방지하기…

5개월 ago

차원 축소(Dimensionality Reduction)

차원 축소(Dimensionality Reduction)는 고차원의 데이터를 저차원의 공간으로 변환하는 기법입니다. 이는 데이터의 중요한 정보를 최대한 유지하면서 불필요한 정보(노이즈)를 제거하고, 계산 효율성을…

5개월 ago